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Abstract. An approach to lattice dynamics computations treating jointly the vibrational 
spectrum of a crystal and its properties relative to the uniform stress is outlined. The 
importance of knowing the microscopic structure of a uniform strain is emphasised. An 
analysis of the dynamical properties of the silicon oxynitride crystal is attempted using very 
restricted experimental information on its vibrational spectrum supplemented by data on its 
structural variations under hydrostatic pressure. Special attention is paid to changes in 
various structural elements, whose combined effects are treated as a vector of the uniform 
strain characterising its ‘shape’ in the space of the internal coordinates of the lattice. A set 
of force constants obtained by fitting the above experimental data is applied together with 
the estimated effective charges to predict the elastic and piezoelectric constants and also the 
experimentally undetermined optical frequencies. 

1. Introduction: interrelations between various dynamical properties of a crystal 

A model treatment of the dynamical properties of a crystal can be more or less pro- 
visionally subdivided into three sequential steps. The first step relates to the selection 
of the potential energy function approximation and the estimation of its parameters. 
The second consists of fitting experimentally determined dynamical properties and of 
refinement of those parameters. The third implies the use of the refined dynamical model 
of a crystal to predict its physical properties, which are not easily accessible by direct 
investigation, or to discuss their interrelations with peculiarities in the structure and 
bonding. 

The third of the above steps is of the most practical interest from the point of view 
of materials science if it is treated as an aid to estimate some unknown properties of a 
crystal, using the available experimental information on the other properties and on the 
crystal structure. The efficiency of this approach strongly depends upon the uniqueness 
of the determination of the dynamical model parameters. Their evaluation is usually 
based on measurements of such macroscopic properties of a crystal as its vibrational 
spectrum and its elastic constants. Methods of calculating these properties have been 
described in a number of books (see, e.g., Born and Huang 1954). 

Unfortunately, the parameters of the potential function cannot be determined in a 
unique way from the known macroscopic properties, and thus the scope of the above 
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prediction? is significantly rc4trictcd. This ambiguity has been analysed most thoroughly 
with respect to the problem of thc determination of the force constants from the known 
vibrational frequencies of a crystal (Cochran 197 1). ‘I’hese are related by 

where K is the force constant matrix and LA are its eigenvectors (the ‘shapes’ of the 
normal coordinates) corresponding to the normal modes with frequencies uA. One can 
affirm that the dynamical model is unique if i t  lcads to a matrix K whose eigenvalues and 
eigenvectors coincide with experimentally determined squares of vibrational fre- 
quencies and shapes o f  vibrations respectively (Cochran 1971). In other words, the 
unique set of force constants of a crystal can be found if both the macroscopic scale 
characteristics of the vibrational process and its microscopic pattern are known. 

In practice, only the a)1; values arc measured directly and the LA vectors cannot 
be determined from any experiment, although the role of isotopic effects in their 
characterisation is well known (including the possibility of measurement of isotopic 
effects in inelastic neutron scattering, as discussed by Elcombe (1974)). I’he additional 
possibilityofindirect estimationofLi values originatingfrom an  intensity investigation 
and its computational treatment has also been discussed (Lazarev et a1 1975). 

In these circumstances, most attention should be paid to any additional experimental 
information which might interrelate directly the microscopic pattern of the structural 
variation in a lattice with any external field applied to the crystal if the former is treated 
as a response to the latter. Among such experiments, those employing the isotropic 
(hydrostatic) stress are promising since they provide a real opportunity to influence, 
and thereby investigate, the interatomic bonding in a lattice. Unlike the hydrostatic 
compression, the uniaxial stress often destroys the crystal at relatively low pressure and 
is therefore not so widely applicable. 

The effect of pressure on the vibrational spectra of solids has been studied in a 
number of papers treating mainly the macroscopic values; Zallen (1974), for example, 
paid most attention to the Gruneisen parameters. Several theoretical investigations of 
the elasticity of a lattice have been published (see Lax 1965, Keating 7968, Barron et af 
1971, Anastassakis and Cardona 1981) which developed and expanded the general 
foundations outlined by Born and Huang (1954). ‘I’he experimental data on the micro- 
scopic pattern of internal strain in the particular case of the simplest diatomic cubic 
crystals, and their application to testing various dynamical models, have been reviewed 
by Cousins (1982). 

Whilst at present the prospects of direct determination of the shapes of the normal 
vibrations seem unfavourable, the technique of crystal structure determination under 
high hydrostratic pressure has become routine over the last 10-15 years. The microscopic 
structural variations in dozens of complicated lattices have been determined precisely, 
as reviewed by Hazen (1985). This technique is cqually applicable to powder samples 
for which no detailed information on the vibrational spectrum and elastic constants can 
be obtained. The present paper attempts to highlight the advantages of using data on 
the structural variation under hydrostatic compression to evaluate the dynamical model 
parameters of a crystal. 

A crystal with N atoms per primitive cell can be regarded as a system of N inter- 
penetrating geometrically equivalent Bravais sub-lattices, each being specified by the 
six primitive-cell parameters, three lengths and three angles. The relative displacements 
of the sub-lattices do not affect these parameters and therefore do not manifest them- 
selves macroscopically. 
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A macroscopic strain of a crystal which keeps its ideal regularity is called homo- 
geneous (Born and Huang 1954). In general, such deformation alters all primitive-cell 
parameters and their variations are treated as the six components of the macroscopic 
strain vector U, (the use of Voigt’s indices is implied). This strain changes the interatomic 
distances and destroys the balance of forces acting on each atom in the lattice. Thus, the 
lattice undergoes structural relaxation to minimise the strain energy. This process is 
described by the inner displacements q ?  of rigid sub-lattices or by some linear com- 
binations of normal coordinates Q, which correspond to the Brillouin zone centre 
(Anastassakis and Cardona 1981). The above quantities are related by 

where the coefficients L k ,  are the elements of the eigenvector conjugate with the Ath 
normal coordinate (here and below the Einstein convention of summing over repeated 
suffixes is assumed). 

Let us recall now that the method to describe the potential function of a crystal as a 
sum of pair forces, three-body forces, four-body forces, etc is regarded as being one of 
the most suitable for lattice dynamics calculations (see, e.g., Lax 1965). Customarily the 
basis of such expansion consists of changing the interatomic distances, valence angles, 
dihedral angles, etc. These are called the internal coordinates (Califano 1976) since they 
are invariant to translations and rotations. The internal coordinates are used here 
because they provide the most easily visualised treatment of the atomic rearrangement 
in a lattice under compression. 

At any given vector U there exists a unique way of corresponding lattice relaxation 
and only this vector needs to be specified to determine the structure of a strained 
crystal. Nonetheless, it is convenient to describe the microscopic structural variations as 
occurring in the space of two sets of independent variables, external strains U,  ( i  = 1, 
2, . . . , 6 )  and normal coordinates Q,  (A = 1 , 2 ,  . . . ,3N - 3). Actually, any variation 
Aqk of the kth internal coordinate may be decomposed into two contributions: 

where the subscripts Q and U denote that all Q, or U, are kept constant during dif- 
ferentiation (Barron et a1 1971, appendix 2). To avoid misunderstanding, it should be 
emphasised that in the literature on the elasticity of crystals only the second term in the 
decomposition (3) is referred to as the ‘internal strain’ or the ‘internal coordinate’. 

The behaviour of a crystal structure under hydrostatic compression is usually inves- 
tigated by a series of x-ray or neutron diffraction experiments providing complete 
information on the pressure dependence of the primitive-cell parameters and atomic 
positions. These data can be expressed in terms of the volume compressibility K and 
the linear compressibilities K, ( i  = 1, 2, 3), or of the compressibilities of all internal 
coordinates, dqk/dp,  which may be either positive or negative. The following com- 
putational scheme has been adopted to deduce the above values theoretically (Smirnov 
1988, Smirnov and Mirgorodsky 1989). 

The scheme is based on an expression connecting the deformation energy (per 
primitive cell) V with the internal coordinates q: 

where Kkl are the force constants. The following formulae for the elastic constants C,, 
and the volume compressibility K may be deduced from this expression: 

where Q is the volume of primitive cell and 

4;: = Lki,Q, (2) 

A4 k = Q A i- (aq k / a  Q A u A Q  n (3) 

& kKklql (4) 

CI, ( l / Q )  d 2 V / d U ~  dU, = (l/Q)(dqk/dUt)Kkl dql /dU,  (5) 

K d2V/dp2 = (dqk/dp)Kkl dql/dp. (6) 
The formal similarity of equations (5) and (6) with (1) is evident and the dqk/d U ,  or 
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dqk/dp values can be treated as the ‘shapes’ of the uniform strain Uior of the hydrostatic 
compression respectively. However, in expressions (1) and ( 5 )  only the macroscopic 
values on the left-hand sides can be determined experimentally. In expression (6) the 
dq  k/dp values are found from the experimental microscopic pattern of hydrostatic 
compression and only the Kkl values remain unknown. Thus, the extreme importance 
of including this equation into the fitting procedure is evident. 

Since the first three components of the vector U represent the relative changes of the 
linear dimensions of a crystal along Cartesian axes, the following relation is valid: 

K~ = dU,/dp.  (7) 

dqk ldp  = (dqk/dUi)dUi/dp = (dqk/dUi)Ki (i = 1,2,3) .  (8) 

dqk/dU; = (a(lk/aui)Q 4- Lki.(aQh/aui)U, (9) 

We can then write for dq,/dp: 

The expression for dqk/d Ui can be derived from (3) as 

where LkA = d q k / d Q A  is an element of the Ath eigenvector of the matrix K in a basis of 
internal coordinates (the subscript U‘ denotes that all Ui are kept constant except the 
variable of differentiation). It should be emphasised that the first term on the right-hand 
side of expression (9) does not depend upon the interatomic forces since it is specified 
completely by the structural parameters of a lattice. 

To obtain the a Q,/d U; values, one has to use the stationary condition for energy 
(see Born and Huang (1954), 5 11) which leads in our case to the equation 

where Fii is the mixed derivative of energy V against Q ,  and Ui: 
(aQA/aui>,, = - F ~ i / o ?  (10) 

FAi e (a2V/dUi ~ Q A ) Q . u ’  = (aqk/aui)QKklLIA. (11) 

cij = ( l / R ) ( d q k / a U i ) Q K k l ( a q l / a  U j ) Q  - (l/a ) F i i F J . , / o ? .  

The expressions (9)-(10) enable equation ( 5 )  to be rewritten in a form equivalent to 
equation (42.2) of Born and Huang (1954): 

( 12) 
Introduction of the compliance matrix S = (C) - ’  enables the calculation of K~ and 

K as 

K ,  = 2 sij 

K = E K j  (i = 1,2 ,3) .  

( i , j  = 1,2 ,3)  
I 

i 

The inclusion of the polarisation properties of a lattice into our computational scheme 
is based on the expression of a polarisation vector variation AP through the internal 
coordinates: 

AP,  = (dP,/dqk)Aqk ZiAqk. (14) 
Here i labels the Cartesian axis (as in expressions (7) and (13b)) and zZ is the effective 
charge tensor of the lattice. The formulae for the oscillator strength 4np; of the Ath 
normal vibration 

and for the piezoelectric constant e, 

follow from expression (14). 

4nP;. = (dP,/dQa.)’ = ( Z i L k n ) ’  

e, = dP, /dU,  = zZdqk/dU, 

(15) 

(16) 
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0 S i  ON oo 
Figure 1. Crystal structure of Si2N20 projected onto the xy plane. A primitive cell is shown 
by broken lines and the atoms specifying the Bravais sub-lattices are numbered. 

Thus calculation of the vibrational, elastic and polarisation properties of a crystal is 
possible if a set of model parameters specifying the force constant matrix K and the 
effective charge tensor Z ;  is determined. In the following sections an estimation of some 
unknown properties of a practically important material, silicon oxynitride, is attempted 
using a very restricted amount of spectroscopic data together with information on its 
structural variation under hydrostatic compression. 

2. Experimental data on the structure and dynamical properties 

The crystal structure of silicon oxynitride (figure 1) and its variation under hydrostatic 
pressure have been determined by neutron scattering from a powdered sample (Srinivasa 
et a1 1977). The primitive cell of the orthorhombic ( C m ~ 2 ~ / C i ? )  crystal contains 10 
atoms (two Si2N20 formula units), the silicon and nitrogen atoms occupying the general 
positions. Two oxygen atoms lie in the symmetry planes oyz. Each silicon atom is in a 
distorted tetrahedral coordination, being linked to three nitrogen atoms at distances 
ranging from 1.70 to 1.73 8, and to one oxygen atom at a distance of 1.645 8,. The silicon 
oxynitride structure can be classified as one of the framework-type lattices. One can, 
however, distinguish in this three-dimensional network folded sheets of [Si,N2],,, along 
the y z  plane, which are interconnected by Si-0-Si bridges (the two-fold coordination 
of oxygen) with the Si . . . Si directions along the x axis. 

The available experimental data on the changes that occur in the structure under 
hydrostatic pressure enable evaluation of the compressibilities K ,  K ~ ,  K~ and K ~ .  More- 
over, the changes in various fragments of the lattice can be determined and the aq/ap 
values deduced. Some of these, corresponding to the internal coordinates involved in 
further treatment, are listed in table 1. 

It follows in particular from the analysis of the above values that as the crystal 
compresses the SiOSi angles diminish and at the same time the bonds in the Si-0-Si 
bridges elongate. Let us recall now that similar changes in the Si-0 bond lengths and 
SiOSi valence angles are found in other molecular systems possessing the Si-0-Si 
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bridges, as has been established by quantum chemical computations. This interrelation 
is represented in the force fields of these molecules by the positive sign of the off-diagonal 
SiO/SiOSi force constant and can be treated as originating from some intrinsic properties 
of the bridge. The numerical value of the force constant obtained by quantum chemical 
computations for molecular systems (Newton and O'Keefe 1980, O'Keefe and McMillan 
1986, Ignatyev 1988) nearly coincides with the value estimated empirically for a-quartz 
from frequency fitting (Lazarev et a1 1975). 

Applying the above interaction force constant to the calculation of the structural 
variation in a-quartz under hydrostatic compression leads, however, to disagreement 
with experimental data. As has been shown by Jorgensen (1978), in compressed a- 
quartz the diminishing SiOSi angle is accompanied by a decrease in the Si-0 bond 
lengths. No explanation of this discrepancy has been suggested as yet. 

Unlike the dense a-quartz network of oxygen bridges positioned in various orien- 
tations relative to one another, with numerous non-bonding oxygen-oxygen interactions 
affecting the properties of the bridges, all the Si-0-Si bridges in silicon oxynitride are 
uniformly oriented. They lie in the symmetry planes and the two-fold axis transforms 
one set into another. It would be expected that in this crystal the intrinsic properties of 
the bridges are more readily separated from other factors affecting their dynamical 
properties. This is discussed below. 

Experimental information on the vibrational spectrum of silicon oxynitride is restric- 
ted to the results of IR absorption measurements of a powdered specimen in the range 
1300-200 cm-', (Baraton et af 1982). A factor-group symmetry analysis predicts the 
following decomposition of the representation of long-wave optical vibrations (the 
orientations of the transition dipoles in the polar species are indicated in brackets): 

roptlca '  = 7A1(z) + 6B,(x)  + 7A2  + 7 B 2 ( y ) .  
For a qualitative understanding of the high-frequency part of the spectrum, it is 

reasonable to describe it in terms of the bond-stretching modes in the structural units 
Si-0-Si and Si-N-Si2 composing the lattice, since the high masses of the peripheral 
atoms in these units favour the localisation of various modes inside the units irrespective 
of the peculiarities of the force field. The four Si-0 stretching vibrations in two 
Si-0-Si bridges which are non-equivalent to translation can be approximately described 
as two v,SiOSi (A2, B,) and two v,SiOSi (Al ,  B,) modes similar to the corresponding 
ones in a free three-atomic unit. Because of the nearly plane geometry of the NSi3 unit, 
its internal stretching-type modes can be described as the shifts of nitrogen in the triangle 
of fixed silicon atoms, each nitrogen possessing two degrees of freedom of this kind. 
There are in total eight long-wave optical vibrations of similar shape in the crystal, two 
modes in each irreducible representation. Thus, 12 optical modes are expected to be 
found in the relatively high-frequency region of the spectrum, nine of them being IR 
active. 

3. The force-field model and the electro-optic scheme 

In lattice dynamics computations for silicon oxynitride the potential function has been 
described in a basis of internal coordinates composed of the Si-0 and N-Si stretching 
and OSiN, NSiN, SiOSi and SiNSi bending coordinates. This initial set has been comp- 
lemented by the set of two-body coordinates corresponding to the non-bonding inter- 
actions at distances up to 3 .5A.  In total the basis consists of 13 sets of internal 
coordinates, nine two-body and four three-body ones. A complete list of equilibrium 
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values of these coordinates and the corresponding force constants is given in table 1. 
Corresponding to the number of internal coordinates, the force field has been charac- 
terised by 13 diagonal force constants (nine of bond stretching and four of angle bending 
type) and three off-diagonal force constants (one of stretch-stretch and two of stretch- 
bend type). In table 1 these are denoted by subscripts which label the force constant 
according to the number of coordinate set, the off-diagonal constants being labelled by 
two numbers of interacting coordinates. 

Only diagonal force constants were included into the initial approximation of the 
force field. The non-zero values were originally assigned to the minimal set of them, 
which comprises the most easily estimated force constants of Si-N and Si-0 bonds and 
the nearest N-N or N-0 distances at the edges of the tetrahedra and of the NSiN or 
NSiO tetrahedral angles. None of the calculated vibrational frequencies vanished in this 
approximation although it was restricted practically to the internal force field of the 
N3Si0 tetrahedron. 

The electric polarisation of a lattice induced by its deformation has been described 
by the simplest version of thevariable-charge model (VCM) (Lazarevet a1 1986) operating 
with atomic point charges which were believed to depend linearly only on the elongations 
of the bonds issuing from the mth atom. The parameters of this model were the charges 
z ,  of atoms in their equilibrium positions and the derivatives of the atomic charges with 
respect to the bond elongations, dzm/dIm, ( I m n  is the length of the bond between the 
mth and nth atoms). The electroneutrality condition imposed some restrictions on the 
magnitudes of these parameters. For silicon oxynitride they are: 2zs, + 22, + zo = 0, 

All the above charge parameters were fixed in our computations since no quantitative 
data on the IR intensities were available. The equilibrium oxygen charge in the VCM 
description of @-quartz (Lazarev et a1 1986) was of the order of one electronic charge, 
and it was supposed that the same value zo = - l e  could be adopted for silicon oxynitride. 
The other equilibrium atomic charges were estimated more tentatively as zs,  = 2e and 
zN = -1.5e. The derivatives dzs,/~I, ,o and dzs,/dls,, were both assumed to be 0.6 e/A. 
This set of charge parameters enabled the experimental IR intensity distribution to be 
reproduced qualitatively. 

The initial set of force constants reproduced quite satisfactorily the experimental 
frequencies in our normal coordinate calculation. However, the elastic properties of the 
silicon oxynitride lattice could not be described by this force-field model since the matrix 
of the elastic constants was singular. This means that at this set of force constants the 
crystal is unstable relative to the uniform stress. Correspondingly, this set does not allow 
the theoretical dq/dp or K ~ ,  K ~ ,  K~ and K values to be calculated and compared with 
experiment. 

It was found that at any non-zero, even extremely small magnitude of the SiOSi 
bending force constant ( K I 3 )  which slightly affected vibrational frequencies, this dif- 
ficulty disappeared and the crystal became stable. The set of force constants obtained in 
this stage of the calculations is denoted in table 1 as set I. 

A detailed comparison of the various dynamical properties of silicon oxynitride with 
those calculated by the above set of parameters is given in tables 1-3. The inefficiency 
of this version of the force field manifests itself in the huge discrepancies between the 
theoretical and experimental values of the compressibilities and, most obviously, in the 
negative signs of the off-diagonal elastic constants C12, C13 and C2, which imply negative 
Poisson’s ratios. Among the calculated dq/dp values, the largest deviations from experi- 
ment were observed for the compressibility of the SiOSi angle and the 09. . . Ol0 

dzo/als,o = - ~ ~ s 1 / ~ ~ s 1 0 ,  ~ ~ , / a ~ s , ,  = -dzs,/dls,N* 
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Table 2. Vibrational spectra. 

Experimental Calculated 

IR spectrum w (cm-') 
w (cm-I), Symmetr'y 
shape of band species I I1 I11 4npw2 ( x c w 2 )  

1130s B! 1134 1134 1134 62 
A2 

1010 sh - 
1030 sh B2 999 999 999 1 

990 s Bl 992 992 992 22 
A ,  927 929 929 11 

953 vs Bz 928 929 929 139 

Bl 911 912 912 36 
906 vs At 894 894 894 146 
730 sh 
619 m AI 666 671 615 6 
648 w B2 651 655 653 16 
542 s B,  574 574 570 35 

B2 554 559 560 7 

AI 539 565 512 6 
Bl 510 510 512 1 

496 s B2 500 507 504 8 

448 s AI 425 429 427 5 
A2 393 393 397 - 
B1 388 388 386 1 

327 m B2 312 393 380 1 
AI 280 274 271 1 

252 m B2 210 224 229 0 
A *  139 221 250 0 

1131 1132 1131 - 
- _ - -  

A2 998 999 999 - 

A2 914 914 913 - 

- - - - -  

A2 540 540 538 - 

A2 468 466 462 - 

A2 210 269 267 - 

distance. This disagreement was used as a guide to the further variation of the K13 
force constant and to the introduction of a non-zero value of the K, force constant 
characterising the stiffness of the 09. , , Ol0 non-bonding contact. 

Furthermore, the interaction force constant K1, 13, which represented the coupled 
nature of Si-0 stretching and SiOSi bending, was introduced based on the considerations 
of the force fields of the Si-0-Si bridges developed earlier (Lazarevet al1975). Then, one 
more off-diagonal force constant, K8,13, which represented the dynamical interaction 
between the SiOSi angle bending and the elongation of the 09. . . Ol0 distance, was 
found to be necessary to improve the calculated aq/dp values. 

The resulting force field (version I1 in table 1) did not significantly change the 
calculated frequencies with the exception of the lowest one in the A, species. The latter 
has not been identified experimentally and thus cannot be used in the refinement of the 
force-field model. The fitting of the experimental volume and linear compressibilities of 
the lattice and of the local compressibilities of its structural units has been improved 
considerably, as can be seen in table 1. 

One more version of the force field was found when attempting to design a dynamical 
model which would correspond to the experimentally determined positive sign of dlsio/ 
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Table 4. The piezoelectric constants e,J (C m-2) and moduli d,J 
version I1 of the force-field. 

C N-’) calculated with 

ij e d 

15 -0.09 -1.02 
24 0.28 -2.56 
31 -0.06 -0.27 
32 -0.09 -0.56 
33 0.31 -1.22 

a p .  The force fields I and I1 both led to negative compressibility of the Si-0 bond in 
silicon oxynitride. In force field I11 the constant K1,13 has increased substantially since 
its positive sign corresponds to the appearance of stretching forces in the Si-0 bonds 
when the SiOSi angle decreases. Also, one more interaction constant, K1,8, has been 
added. Its negative sign has been accepted in an attempt to represent the trend to 
elongation of the Si-0 bonds as the O9 . . . Ol0 distance increases. 

The decreased (in comparison with force field 11) magnitude of the diagonal SiOSi 
bending force constant and the total effects of varying the interaction constants K1,13 
and Kl,8 enabled a positive compressibility of the Si-0 bond to be obtained when force 
field I11 was applied. In terms of absolute magnitude, however, the compressibility 
was still underestimated. As seen in table 3, the last set of force constants implies a 
considerable ‘softening’ of the overall lattice. 

Tables 3 and 4 present the calculated values of the elastic constants C,, the piezo- 
electric constants e8 and the moduli d ,  which can be treated in the absence of experi- 
mentally obtained values as theoretical estimates. 

4. Discussion of results 

A similarity in the calculated spectra for all of the above versions of the force field 
contrasts with the tremendous changes in the macroscopic elastic properties. This means 
that the spectroscopic data alone which are usually treated as the main source of 
information to effect force-field adjustments, are insufficient for the correct deter- 
mination of some terms in the potential function. A description of the macroscopic 
elasticity of a crystal requires the precise reproduction of the potential topography for 
the atoms which undergo the most significant displacements in the process of uniform 
strain. These displacements evidently occur along the bottoms of the potential valleys 
and are very sensitive to the weakest interactions, both of local and non-local origin. 

In particular, one can expect that the most significant changes of atomic positions in 
a crystal under hydrostatic pressure will be for the sites characterised by the smallest 
coordination numbers or by the non-uniform distribution of the surrounding atoms 
around a given site. The oxygen positions in silicon oxynitride satisfy these conditions. 
The same can be said of the bridging oxygen atoms in silica and various silicate frame- 
works. The macroscopic elastic properties of these crystals are determined pre- 
dominantly by the parameters describing the peculiarities of a potential in which the 
bridging oxygen atoms move. 

Since that potential isvery roughly characterised by the force constants of the Si-0-Si 
bridge, its more precise description requires the inclusion of additional terms which 
would represent the much more complicated (higher-order) coordination of bridging 
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oxygen than is provided by the formal two-fold coordination. In the case of silicon 
oxynitride this implies the investigation of interactions in a relatively large area sur- 
rounding the oxygen atom which includes, in addition to the two chemically bonded 
silicon atoms, six nitrogen atoms in two bound N,SiO tetrahedra and two oxygen atoms 
of neighbouring bridges at distances of about 3.3 A. The possible many-bodied nature 
of interactions in this area may complicate the description of the potential function. 

Some similarity exists between the surroundings of the bridging oxygen atom in 
silicon oxynitride and that in a-quartz. In the latter, at a similar value of equilibrium 
SiOSi angle (144"), there are six nearest-oxygen atoms in two joined tetrahedra and two 
otheroxygen atomsremoved to3.3 A. Onecan applysuitable parameter softhepotential 
function of silicon oxynitride to a-quartz in an attempt to explain the origin of the 
difference in the Si-0 bond length behaviour in these two crystals under hydrostatic 
compression. 

Experimental investigation of the structure of silicon oxynitride under hydrostatic 
pressure (Srinivasa et a1 1977) shows that the SiOSi angle decreases while the oxygen- 
oxygen distances between the neighbouring bridgesincrease. Under thesecircumstances 
the signs of two interaction force constants selected in version I11 of the force field, 
Kl ,8  < 0 and K1,13 > 0, determine their similar action on the Si-0 bond length: both 
correspond to the forces stretching that bond at the diminished SiOSi angle and enable 
the experimental effect to be reproduced in the calculations. It is well known, however, 
that changes in the local geometry in the vicinity of the bridging oxygen atom in a-quartz 
under hydrostatic pressure occur in a different way: both the SiOSi angle and the length 
of the non-bonding oxygen-oxygen distance diminish (Jorgensen 1978). Thus, if the 
above interaction force constants of oxynitride were transferred into the calculation of 
local compression effects in a-quartz they would affect the Si-0 bond length in opposite 
directions. Correspondingly, the experimentally determined insignificant shortening of 
the Si-0 bond in a-quartz under compression may be treated as originating from the 
predominant effect of the dynamic interaction between the bond length and the non- 
bonding 0 . . . 0 distance. 

Among the peculiarities in the macroscopic elastic properties of silicon oxynitride, 
the anisotropy of its compressibility deserves special comment. Qualitative speculations 
treating the lattice as being composed of relatively rigid sheets of [Si2N2]cc,ca, which are 
interconnected by the more flexible oxygen bridges along thex axis, lead to the following 
relation expected for the compressibilities along the crystal axes: K~ > K~ K ~ .  How- 
ever, the experimental values match up as K~ > rc3 > K~ and this result is reproduced in 
lattice dynamics computations irrespective of the selected version of the force field (cf 
table 3). A detailed analysis of the computational results shows that the stiffness of the 
lattice along x is determined by the large force constants of the Si-0 bonds, since their 
directions deviate only by 15" from that axis. The calculated compressibility along the x 
axis can be increased considerably by assuming the Si-0 force constant to decrease 
to values characteristic of Si-N bonds. Experimental data on the compressibility of 
germanium oxynitride, Ge2N20,  support this conclusion (Cartz and Jorgensen 1981). 
The linear compressibilities of this crystal match up as K~ > K, > K~ and the difference 
from silicon oxynitride can be readily explained by smaller Ge-0 force constants sup- 
posing the Si-N and Ge-N ones to be nearly the same. 

The origin of the lowest stiffness of the silicon oxynitride lattice along y axis is much 
less evident. The lowest optical frequency of the A, representation corresponds to 
the mode with a significant contribution from SiOSi bending. This mode produces 
considerable negative contributions, as is determined by equation (12), to the elastic 
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constants Cll, C22 and C33. For this mode the force FA2 is always greater than Fhl and 
Fh3. Correspondingly, the mechanical compliance of the lattice along y (the linear 
compressibility K ~ )  is the greatest. Thus, while the largest stiffness along x is explained 
very pictorially by the examination of the static stresses arising in the uniformly strained 
lattice, the lowest stiffness alongy is connected with the peculiarities of the shape of the 
normal coordinate with the lowest energy. 

The experimental compressibilities of the SiN3 groupings are rather badly repro- 
duced in our calculation because of the oversimplified description of the corresponding 
part of the potential function. The deficiency of the force-field model in describing these 
groupings manifests itself more clearly in the calculation of the dq/ap values than of the 
vibrational frequencies. This is probably due to some averaging of individual errors 
when estimating several force constants to determine each of the vibrational frequencies. 
A more sophisticated force-field model of these groupings can be designed using the 
extended set of experimental data including the dq /dp  values for similar crystals like 
Si3N, (Cartz and Jorgensen 1981). 

Of the calculated magnitudes of the macroscopic elastic and piezoelectric constants 
(or moduli), those obtained with the set I1 force constants seem to be the most reliable 
since this set enables better reproduction of the experimental compressibility. Although 
the probable errors of such predictions can hardly be estimated, their success in similar 
calculations for silicon dioxide and some other crystals leads one to expect that the signs 
and at least the orders of the values of the above quantities are predicted correctly. 

5. Concluding remarks 

Although only a single example of a joint treatment of the vibrational spectrum and the 
local compressibilities of various structural fragments has been investigated in this paper, 
some general conclusions can be deduced. To a certain extent, these two sources of 
information on the potential function are complementary in nature. The compliance of 
a crystal to mechanical stress, characterised macroscopically by its compressibility and 
microscopically by the aq/ap  values, determines predominantly the terms of the poten- 
tial function which correspond to relatively weak interactions at large distances. Con- 
versely, the vibrational frequencies, much less sensitive to the above interactions, are 
determined mainly by the forces arising in the chemical bonds and the valence angles. 

Numerous complex oxides with network-type structures are thought at present to 
be promising for practical use due to their elastic, opto-acoustic or electro-acoustic 
properties. The present investigation has shown the importance of oxygen bridges in the 
origin of these properties and the inefficiency of the oversimplified models of purely 
valence forces to describe the potential which governs the movements of the oxygen 
atom. This potential is shown to be equally dependent on the electronic structure of the 
oxygen bridge itself and on the interactions of oxygen with several relatively distant 
atoms. The interactions between distant atoms constitute the most variable part of the 
potential function which specifies the peculiarities of the given lattice. Thus, the quantum 
chemical calculations for molecular systems containing oxygen bridges, which are pres- 
ently rather widely applied to the investigation of bonding in appropriate crystals, need 
care in their application to the properties relevant to the uniform strain of a lattice. 
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